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Abstract

Background—Minimal residual disease (MRD) following treatment is a robust prognostic 

marker in B lymphoblastic leukemia. However, the detection of MRD by flow cytometric 

immunophenotyping is technically challenging, and an automated method to detect MRD is 

therefore desirable. viSNE, a recently developed computational tool based on the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) algorithm, has been shown to be capable of detecting 

synthetic “MRD-like” populations of leukemic cells created in vitro, but whether viSNE can 

facilitate the immunophenotypic detection of MRD in clinical samples has not been evaluated.

Methods—We applied viSNE retrospectively to 8-color flow cytometric immunophenotyping 

data from normal bone marrow samples, and samples from B lymphoblastic leukemia patients 

with or without suspected MRD on the basis of conventional manual gating.

Results—In each of 14 bone marrow specimens containing MRD or suspected MRD, viSNE 

identified a putative MRD population; an abnormal composite immunophenotype was confirmed 

for the putative MRD in each case. MRD populations were not identified by viSNE in control 

bone marrow samples from patients with increased normal B-cell precursors, or in post-treatment 

samples from B lymphoblastic leukemia patients who did not have detectable MRD by manual 

gating.

Conclusion—viSNE shows promise as an automated method to facilitate immunophenotypic 

MRD detection in patients treated for B lymphoblastic leukemia.

Key terms

B lymphoblastic leukemia; ALL; minimal residual disease; viSNE; flow cytometry

*Correspondence to: Joseph A. DiGiuseppe, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St 
Hart-ford, CT 06102-5037, USA. joseph.digiuseppe@hhchealth.org or Dana Pe’er, Department of Biological Sciences and 
Department of Systems Biology, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA. 
dpeer@biology.columbia.edu. 

Additional Supporting Information may be found in the online version of this article.

HHS Public Access
Author manuscript
Cytometry B Clin Cytom. Author manuscript; available in PMC 2018 June 01.

Published in final edited form as:
Cytometry B Clin Cytom. 2015 ; 88(5): 294–304. doi:10.1002/cyto.b.21252.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

In patients who have acute lymphoblastic leukemia (ALL), “minimal residual disease” 

(MRD) is the persistence of rare leukemic cells despite the attainment of morphologic 

remission. MRD is an important adverse prognostic factor [reviewed in Refs. 1,2)] that 

informs contemporary risk-adapted therapeutic protocols (3,4). Two principal methodologies 

have been used to detect MRD in ALL: flow cytometric immunophenotyping and PCR-

based amplification of antigen-receptor genes (1,2). Of these methodologies, flow cytometry 

is technically simpler, more rapid, and less expensive (2). Moreover, flow cytometry permits 

direct quantification of viable leukemic cells (2), and yields quantitative results comparable 

with those obtained by PCR (5). Until recently, the sensitivity of flow cytometry-based 

methods (10−4, or 1 leukemic cell in 10,000 total cells) was inferior to that of PCR-based 

methodologies (10−5, or 1 leukemic cell in 100,000 total cells); however, with the 

identification of newer immunophenotypic markers, sensitivity of 1 in 100,000 has also been 

demonstrated by flow cytometry (2,6).

Arguably, the most challenging aspect of MRD detection by flow cytometry is the user-

dependent expertise required to identify rare abnormal cells among an overwhelming 

preponderance of normal cells, many of which display composite immunophenotypes that 

closely resemble those of the leukemic cells being sought (2,7). Immunophenotypic data are 

analyzed in a series of 2-dimensional dot plots, each with its own characteristic set of 

antigenic expression patterns. A 9-color experiment, for instance, yields 55 unique 2-

dimensional displays of light scatter and fluorescent parameters (8), any of which might 

potentially contain discriminatory phenotypic information. As a practical matter, the 

expertise required for immunophenotypic MRD detection has limited its implementation in 

multi-center studies to a relatively small number of reference laboratories (3,4,6). 

Standardization of immunophenotypic MRD detection among different laboratories has also 

been problematic; although standardization has been achieved to varying extents (9–12), 

interlaboratory concordance has been lower for MRD levels below 0.1% (9), and much of 

the interlaboratory discordance has been attributed to discrepancies in data analysis (11).

Automated data analysis represents one potential solution to the challenges posed by 

immunophenotypic MRD detection. Indeed, computational methods for analysis of 

multiparametric flow cytometric data have become increasingly important (reviewed in Ref. 

13)) as conventional manual gating of large single-cell data sets generated by contemporary 

fluorescence-based cytometers (14,15), and more recently, time-of-flight mass spectrometry 

(16), is both impractical and unlikely to extract much of the information contained within 

the data. Aghaeepour et al. (13) have assessed numerous automated methods for clustering 

subpopulations within multiparametric data sets, but these methods are insufficiently 

sensitive to detect MRD populations. Fišer et al. employed a combination of hierarchical 

clustering analysis and support vector machine (SVM) learning in an effort to automate 

MRD detection, but distinction of MRD from regenerating normal B-cell precursors 

(hematogones) was problematic for the SVM classifier (17).

More recently, a computational tool called “viSNE” (after the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm on which it is based (18)), was shown to be capable 
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of detecting synthetic “MRD-like” populations of leukemic cells created in vitro by dilution 

of leukemic bone marrow samples into normal bone marrow samples (19). In viSNE, each 

cell is represented as a point in high-dimensional space, each coordinate of which reflects a 

single parameter (e.g., the expression level of one surface protein). An optimization 

algorithm searches for a projection of the points in high-dimensional space (e.g., 8 

dimensions when analyzing the fluorescent parameters of an 8-color experiment) into two 

dimensions, so that pairwise distances between the points are optimally conserved. The 

resulting low-dimensional projection, termed the viSNE map, is visualized as a scatter plot, 

in which the location of a cell reflects information from all of its original dimensions. The 

resulting viSNE map provides a visual representation of the single-cell data that is similar to 

a biaxial plot, in which the positions of individual cells reflect their proximity in high-

dimensional space. Moreover, the multiparameteric characteristics of individual cells in the 

viSNE map can be visualized interactively by incorporating color as a third dimension. In 

the recently published synthetic example of MRD detection, viSNE accurately distinguished 

a leukemic cell population (which comprised 0.25% of all cells) from normal bone marrow 

cells (19), demonstrating the ability of the algorithm to identify rare populations on the basis 

of immunophenotype.

Whether viSNE can facilitate the immunophenotypic detection of MRD in clinical samples, 

though, has not been evaluated. Although viSNE was able to detect a 0.25% MRD 

population (19), a sensitivity of at least 10−4 (0.01%) would be required to be clinically 

useful (1,2). Moreover, in the synthetic example described above, a leukemic sample 

consisting predominantly of blasts was used to simulate an MRD sample (19), whereas 

clinical samples obtained after treatment not only contain a potential MRD population, but 

also normal B-cell precursors (20). Since normal B-cell precursors are both 

immunophenotypically similar to leukemic B-cell lymphoblasts, and particularly numerous 

in actively regenerating bone marrow following chemotherapy (20), their presence in clinical 

samples represents a potential impediment to MRD detection by viSNE. An additional 

requirement for clinical usefulness would be the ability of the algorithm to distinguish the 

spectrum of abnormal immunophenotypes encountered in clinical practice, while 

minimizing identification of rare immunophenotypic subsets of normal B-cell precursors. 

Here we apply viSNE retrospectively to 8-color flow cytometric immunophenotyping data 

from normal bone marrow samples, and samples from B lymphoblastic leukemia patients 

with or without suspected MRD following therapy. We demonstrate that viSNE overcomes 

these challenges, and thus shows promise as an effective aid for distinguishing MRD 

populations in clinical samples.

MATERIALS AND METHODS

Patient Samples and Flow Cytometric Immunophenotyping

EDTA-anticoagulated bone marrow aspirate samples from patients with or without B 

lymphoblastic leukemia (Supporting Information Table 1) were received in the Special 

Hematology Laboratory of Hartford Hospital for flow cytometric immunophenotyping 

between October, 2011 and March, 2014. The diagnosis of B lymphoblastic leukemia was 

established in each case using standard WHO criteria (21,22). Bone marrow suspensions 
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containing 2 × 106 cells were incubated within 12 h of their procurement with each of three 

validated cocktails containing eight or nine fluorochrome-conjugated antibodies [(23), 

Supporting Information Table 2] for 15 min at room temperature. Labeled samples were 

processed for flow cytometric immunophenotyping as described previously (24). Up to 1 × 

106 cells per sample were acquired using BD FACSCanto II flow cytometers equipped with 

violet, blue, and red lasers running BD FACS-Diva software v. 6.1.3 (BD Biosciences, San 

Jose, CA). Instrument performance was verified daily using the BD Cytometer Setup & 

Tracking Beads kit (BD Biosciences). CD45-V500 was compensated using cellular controls 

as described previously (25). Compensation of all other fluorochromes was performed using 

BD CompBeads (BD Biosciences) according to the manufacturer’s instructions. 

Compensated list-mode data were analyzed using WoodList 2.7.7. Doublets and other 

cellular aggregates were excluded using a display of FSC peak area vs.FSC peak height, and 

viable cells were gated using standard displays of FSC versus SSC (7,8). Since all of our 

samples were procured locally, and processed within 12 h of procurement, a viability stain 

was not found to be necessary to exclude dead cells. Detection of MRD by conventional 

manual gating (2,6,7,26) was performed by one of us (JAD) without any knowledge of the 

results obtained using viSNE. This study was approved by the Institutional Review Board of 

Hartford Health Care (Project #4214HU).

viSNE Analysis

cyt, an interactive visualization tool written in Matlab (19), is available as a download with 

viSNE (http://www.c2b2.columbia.edu/danapeerlab/html/cyt-download.html). Matlab 

(8.1.0.604) was run using a MacBook Pro (Mac OSX version 10.7.5). Viable singlet CD19+ 

B cells from each case were gated in WoodList, and imported into cyt as FCS 2.0 files. 

Multiple samples are needed to cover the range of behaviors observed with normal bone 

marrow. Additionally, it is important to include enough cells from each sample, so that rare 

normal precursor populations will be represented. However, computational burden increases 

with number of cells. To balance the numbers of samples and cells with computational 

burden, we used 10 different bone marrow samples from patients with no history of ALL, 

each of which contributed ~20,000 B cells. To enable direct comparison among cell 

populations, all samples must be simultaneously mapped by viSNE. For each sample 

evaluated, viSNE was run on all viable singlet B-cell files from each of the three antibody 

combinations evaluated (Supporting Information Table 2), together with the 10 control B-

cell files from the corresponding antibody combination. Files from the same 10 control 

samples were used for all analyses. All eight fluorescent parameters were incorporated into 

the analysis. The addition of viable singlet B cells from each test sample to the normal 

reference files resulted in a total of ~200,000–250,000 cells to be mapped at a time, an order 

of magnitude more than previously demonstrated (19). To overcome both the computational 

and crowding burden imposed by so many cells, we used a newly published algorithm for t-

SNE, the Barnes–Hut approximation (27), which is currently included within the cyt 
software (set as default). Typical run times for the generation of a t-SNE map for ~200,000–

250,000 cells were ~40 min.
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RESULTS

A fundamental principle that enables MRD detection by flow cytometric 

immunophenotyping is that leukemic cells typically express a combination of antigens (or 

composite immunophenotype) not observed in their normal counterparts (1–3). In the case 

of B lymphoblastic leukemia, basic phenotypic patterns of normal B-lymphopoiesis have 

been well documented (20,28), and with a suitable antibody panel, nearly all cases of B 

lymphoblastic leukemia are detectable by their abnormal immunophenotype (often referred 

to as a leukemia-associated immunophenotype) (6). In many studies, post-treatment samples 

have been analyzed solely for residual populations expressing the specific leukemia-

associated immunophenotype documented at the time of diagnosis. More recently, it has 

become clear that treatment may induce phenotypic changes in leukemic B lymphoblasts 

(29); for instance, leukemic blasts expressing both CD10 and CD34 at diagnosis may be 

negative for both antigens after induction chemotherapy. A more robust approach to 

immunophenotypic MRD detection, which is neither subject to such treatment-induced 

immunophenotypic modulations, nor requires prior knowledge of the specific diagnostic 

immunophenotype, is to identify B-cell populations whose composite immunophenotypes 

differ from those characteristic of normal B-cell precursors (7,28). Since viSNE plots 

healthy and leukemic marrows to distinct areas of 2-dimensional maps representing high-

dimensional immunophenotypic data, and is capable of detecting rare populations with 

distinct immunophenotypes (19), we hypothesized that viSNE might facilitate identification 

of MRD populations as phenotypically different from normal B-cell precursors.

In conventional immunophenotypic MRD analysis, post-treatment samples are compared 

visually with identically stained normal B-cell precursors using a large series of 2-

dimensional dot plots (7,24,26,28). To distinguish potential MRD populations from normal 

B-cell precursors with viSNE, one only needs to generate a single 2-dimensional map for 

each antibody combination. For each of the three 8-color antibody-staining combinations 

employed (A–C, Supporting Information Table 2), we used viSNE to create a 2-dimensional 

map of normal bone marrow B cells. Since a single normal reference sample would be 

unlikely to encompass all of the potential high-dimensional immunophenotypic diversity 

seen among individual patients, we created a composite map incorporating normal bone 

marrow B cells from multiple individuals. In a series of initial experiments, both the number 

of normal samples used to construct the maps, and the number of normal B cells per sample 

were varied. Reproducible results were obtained using 10 normal samples (“Control Cases,” 

Supporting Information Table 1), each with ~20,000 B cells; we therefore established that as 

our standard.

The normal viSNE map obtained for one of the three antibody combinations (tube A) is 

shown in Figure 1. Note that the map has a structure, and that each of the 10 control samples 

conforms to that structure (Fig. 1A). Furthermore, there is extensive mixing of cells, such 

that each region of the map comprises cells from multiple control samples from different 

individuals (Fig. 1A). As shown in Figure 1B, the structure of the map reflects the patterns 

of antigens expressed by the cells in any given region; despite the contribution of multiple 

samples to each region of the map (Fig. 1A), antigenic expression in each region is 

homogeneous (Fig. 1B). In aggregate, the control samples faithfully recapitulate expected 
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patterns of normal B-lymphopoiesis, including the least-mature B-cell precursors (with high 

expression of CD10 and CD34, and low expression of CD45), mature B cells (with low 

expression of CD10 and CD38, and high expression of CD22), as well as intermediate forms 

(Fig. 1B). As expected, individual control samples are non-uniformly represented among 

different maturational stages; for example, control sample 1 contains relatively few mature B 

cells, and instead contributes cells predominantly to regions corresponding with the least-

mature and intermediate forms (Fig. 1A).

Pairwise immunophenotypic relationships that exist among individual cells in high-

dimensional space are conserved in 2-dimensional viSNE maps (19), and as noted above, 

leukemic B-lymphoblasts typically differ phenotypically from normal B cells. We therefore 

tested whether leukemic B-lymphoblast populations would occupy a unique space in the 

resulting viSNE map when analyzed in conjunction with the 10 control samples. As 

illustrated in Figure 2A using four representative patients’ diagnostic bone marrow samples, 

leukemic B-lymphoblast populations occupy a unique space in their respective viSNE maps, 

which is distinct from the space occupied by normal B cells. These results are in keeping 

with those reported previously using whole bone marrow samples (19). However, we 

demonstrate here that eight surface antigens are sufficient to achieve distinct separation, 

whereas such separation was previously demonstrated with 31 markers (19). In Figure 2B, 

the viSNE map incorporating one of the leukemic samples (ALL 1, circled) is colored for 

expression of several antigens. In this example, the leukemic population expresses CD34, 

CD49f, and CD58 at higher levels than the normal B cells (Fig. 2B). Having used viSNE to 

facilitate the characterization of abnormal antigen expression in the leukemic population, we 

can now visualize these abnormally expressed antigens in a conventional 3-dimensional plot; 

indeed, abnormally increased expression of these three antigens by the leukemic cells 

relative to normal B cells is also apparent in the 3-dimensional dot plot (Fig. 2C).

In some instances, the phenotype of leukemic B-lymphoblasts may differ substantially from 

that of their normal B-cell counterparts, yet display partial immunophenotypic overlap with 

normals. Such a relationship is reflected in the viSNE map illustrated in Figure 3A. In this 

example, the leukemic cells occupy a space in the map that is distinct from a preponderance 

of the normal B cells, but rare normal B cells (enlarged) nonetheless map to the leukemic 

rather than normal B-cell space. Since the viSNE map reflects high-dimensional pairwise 

distances among all cells included in the analysis (both normal and abnormal), the inclusion 

of leukemic cells in the analysis should affect the two-dimensional location of individual 

normal cells in the resulting map. Specifically, the presence of a prominent abnormal (i.e., 

leukemic) population would be expected to increase the number of repelling forces pushing 

normal cells away from that region of the map, whereas a smaller number of cells (i.e., ~1–

3) may fail to create such separation. This finding recapitulates an observation made initially 

with a synthetic MRD sample, in which the suspect region in the viSNE map containing 

ALL cells included rare normal cells (19). The basis for this overlap of rare normal cells 

with leukemic cells in the viSNE map is illustrated in the dot plot in Figure 3B, in which it is 

apparent that these rare normal B cells are more phenotypically similar to a subset of 

leukemic cells than to any of the remaining normal B cells. This observation has 

implications for MRD detection using viSNE. Specifically, the presence of rare normal cells 

within a suspect region in the viSNE map does not preclude identification of leukemic cells 
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in that region, provided that the region contains a distinctly identifiable population of cells 

with an abnormal immunophenotype.

Having established viSNE maps for normal bone marrow B cells and demonstrated that 

leukemic B-cell populations with abnormal composite immunophenotypes occupy spaces 

distinct from normal B cells in viSNE maps, we sought to test whether rare MRD 

populations would also be distinguished from normal B cells by viSNE. For each of 14 

samples in which a suspect MRD population had been identified by manual gating, we 

generated viSNE maps for three different 8-color antibody combinations in conjunction with 

their corresponding identically stained control samples. Representative examples of these 

analyses are illustrated in Figure 4. In the cases illustrated (Fig. 4), most of the B cells from 

the suspect files localize to regions of the viSNE maps that are also populated by normal B 

cells from the control files. In addition, though, each suspect file contains a population that 

does not localize to an area of the viSNE map populated by control B cells (Fig. 4). In 

conventional 3D-dot plots, these outlier populations represent clusters of cellular events, 

whose composite immunophenotypes differ from those of the normal B cells in patterns 

typical of leukemic B-lymphoblasts (Fig. 4). For example, abnormally increased expression 

of CD10 and CD86, and diminished expression of CD38, as seen in Figure 4A, are common 

phenotypic aberrancies in B lymphoblastic leukemia (6,7).

Of the 42 viSNE maps generated from the 14 MRD-containing samples stained with three 

different antibody combinations, a putative MRD population residing outside of regions 

populated by normal B cells was present in 34 (Table 1); in each instance, an abnormal 

immunophenotype consistent with MRD was verified by visual inspection of dot plots, as 

illustrated in Figure 4. (The cyt software enables one to identify uniparametric differences 

between two populations (e.g., the putative MRD highlighted by viSNE and normal), 

thereby highlighting the distinguishing features of such populations, and facilitating rapid 

generation of the most relevant conventional dot plots.) Note also that multiple cells that are 

phenotypically similar in high-dimensional space may be represented in the 2-dimensional 

viSNE map as very close together (Fig. 4A) or overlapping (Figs. 4B and 4C). Importantly, 

in each of the 14 MRD-containing samples, viSNE distinguished a putative MRD population 

with at least one of the three antibody combinations (Table 1). Whereas the manual 

identification of candidate MRD populations is an iterative process, requiring the 

examination of multiple 2-dimensional dot plots by a trained analyst to recognize potential 

MRD populations with abnormal phenotypic features, a single 2-dimensional viSNE plot 

was capable of segregating each of these abnormal immunophenotypes, demonstrating the 

ability of the algorithm to detect “different from normal” across a wide range of phenotypes.

Although viSNE distinguished a putative MRD population in each of the 14 MRD-

containing samples with at least one of the three antibody combinations, in some instances, 

the algorithm failed to detect an abnormal population in individual tubes in which MRD was 

detectable by manual gating. In some of these instances, the most discriminatory phenotypic 

abnormalities were not evaluated in the tube in question, and MRD was only recognizable 

by manual gating through inference. For example, in Case 9, aberrant phenotypes 

sufficiently distinct from normal B-cell precursors to permit definitive characterization as 

MRD were only demonstrable in tubes B and C. In this case, overexpression of CD49f (in 
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tube B) and CD86 (in tube C) clearly distinguished an abnormal B-cell population, which 

was further characterized by CD10 expression and dim CD45 expression. Although no 

specific phenotypic aberrancies diagnostic of MRD were revealed by the antibodies included 

in tube A, the 694 cells identified by manual gating (Table 1) were nonetheless recognizable 

in tube A inferentially, by virtue of their shared phenotypic features [i.e., CD10+/CD45(dim)

+] with the corresponding population in the other tubes, in which definitive aberrant 

phenotypes [i.e., overexpression of CD49f and CD86 in tubes B and C, respectively] were 

demonstrable. In this case, therefore, it is not surprising that viSNE detected an abnormal 

population in tubes B and C, but not in tube A. In other cases, the precise reason for the 

failure of viSNE to detect the abnormal population was unclear. For example, in case 14, 

viSNE failed to detect an abnormal population in tube C, in which overexpression of CD86 

readily permitted direct manual identification of a population of 103 cells.

The suspect MRD populations in these 14 samples comprised between 0.001% and 0.7% of 

viable single cells in the original samples. Since the total number of viable bone marrow 

cells obtained from different patients’ samples also varies, the actual number of MRD cells 

varies widely among the different samples evaluated (Table 1). As shown in Figure 5, the 

number of putative MRD cells identified by viSNE correlated well with the number of cells 

that had been previously identified as MRD by manual gating (r2 = 0.99; two-tailed P < 

0.0001). Moreover, in two different samples, MRD populations comprising as few as six 

cells were detected by viSNE (Table 1). For comparison, visual identification of cellular 

populations comprising fewer than 10–20 cells is technically difficult (7,30).

To evaluate the specificity of abnormal population identification by viSNE, we studied seven 

bone marrow samples from patients with no history of B lymphoblastic leukemia (“Negative 

Controls,” Supporting Information Table 1), eight samples from patients with B 

lymphoblastic leukemia in remission who had no detectable MRD by conventional manual 

gating (“No detectable disease in bone marrow,” Supporting Information Table 1), and three 

samples from a patient with B lymphoblastic lymphoma who had no detectable leukemic 

blasts in the bone marrow by conventional manual gating (“No detectable disease in bone 

marrow,” Supporting Information Table 1). Each sample was stained with the identical 8-

color antibody combinations used for MRD detection, and viSNE maps were generated in 

conjunction with the 10 control samples, as with the MRD-containing samples. No outlier 

populations were identified in 17 of the 21 viSNE maps generated from patients with no 

history of B lymphoblastic leukemia; a representative map is illustrated in Figure 6A (left 

panel). Similarly, no outlier populations were identified in 22 of the 24 viSNE maps 

generated from patients with B lymphoblastic leukemia in remission, or in eight of the nine 

maps generated from a patient with B lymphoblastic lymphoma without detectable marrow 

involvement; a representative map is illustrated in Figure 6A (right panel).

Outlier populations were identified in 7 of the 54 maps generated. In three of these samples, 

the outlier population comprised a single cell, and therefore could not be confirmed as a 

distinct cell population; as noted above, a population consisting of at least 10 cells with an 

abnormal immunophenotype is generally required for reliable identification (30). In the 

remaining four samples, no outlier population comprised [mt]4 cells. The map containing 

the largest outlier population (4 cells) is shown in Figure 6B (left panel). These cells express 
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a mature composite immunophenotype, with bright expression of CD20, CD22, and CD45, 

and absence of CD10 and CD34; in conventional dot plots, the outlier population cannot be 

distinguished from normal B cells (Fig. 6B, right panel). Likewise, in no instance did any of 

these small outlier populations display an abnormal composite immunophenotype consistent 

with MRD. These data indicate that outlier populations segregated by viSNE as “different 

from normal” must still be con-firmed to express an abnormal composite immunophenotype 

consistent with MRD before being classified definitively as such. viSNE comes 

accompanied with cyt and an interactive tool that automatically identifies differences in the 

expression of individual antigens between populations of interest in the viSNE map (e.g., 

between an outlier population and normal controls), thereby facilitating the process of 

confirmation of a putative outlier population as MRD.

DISCUSSION

We demonstrate here for the first time in clinical samples facilitated immunophenotypic 

detection of MRD in B lymphoblastic leukemia using viSNE. It is well established that the 

presence of MRD following treatment is among the strongest prognostic factors in patients 

with B lymphoblastic leukemia (1,2), and contemporary protocols employ MRD detection to 

stratify patients more precisely for risk-adapted therapy (3,4). However, the expertise and 

experience required for accurate immunophenotypic MRD detection have limited its 

implementation in multicenter studies to a relatively small number of reference laboratories 

(3,4,6). Moreover, despite efforts to standardize immunophenotypic MRD detection (9–12), 

interlaboratory concordance for MRD levels below 0.1% has been problematic (9), and 

much of the interlaboratory discordance has been attributed to discrepancies in data analysis 

(11).

Automated data analysis represents one potential solution to the challenges posed by 

immunophenotypic MRD detection. Numerous automated methods for clustering 

subpopulations within multiparametric data sets have been developed [reviewed in Ref. 13)], 

but these methods are insufficiently sensitive to detect MRD populations. In one study, a 

combination of hierarchical clustering analysis and SVM learning was used in an attempt to 

automate MRD detection. However, distinction of MRD from regenerating normal B-cell 

precursors (hematogones) was problematic for the SVM classifier (17). More recently, 

viSNE, a computational tool based on the t-SNE algorithm (18), was shown to be capable of 

detecting a synthetic “MRD-like” population of leukemic cells created in vitro by dilution of 

a leukemic bone marrow sample into a normal bone marrow sample (19).

Although viSNE has been shown to be capable of detecting a synthetic “MRD-like” 

population of leukemic cells (19), this synthetic example fails to take into account several of 

the potential challenges inherent in MRD detection in clinical samples. For example, 

whereas the target population represented 0.25% of all cells in the synthetic example (19), a 

sensitivity of at least 0.01% (and up to 0.001% with newer markers) is standard in clinical 

MRD detection (1,2,6). The incorporation of a newly-published algorithm for t-SNE [the 

Barnes–Hut approximation (27), which is currently included within the cyt software] has 

overcome both the computational and crowding burden imposed by the large numbers of 

cells required for MRD detection. Indeed, we have shown here that viSNE is capable of 
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accurately identifying MRD populations comprising as few as six cells, and representing as 

little as 0.001% of viable cells in clinical samples. In this regard, it should be noted that the 

visual identification of cellular populations comprising fewer than 10–20 cells is technically 

difficult (7,30).

Since viSNE takes into account differences in all dimensions simultaneously, it may 

potentially be more sensitive than manual gating when identifying small (i.e., <10 cells) 

abnormal populations. Determination of the minimum number of events required for reliable 

detection of an abnormal population by viSNE, though, would require comparison with an 

alternate method, such as next-generation sequencing (31). Moreover, the minimum number 

of events required for reliable detection of an abnormal population by viSNE would likely 

be affected by the degree of phenotypic differences between the abnormal population and 

the control cells within the context of each antibody combination evaluated; determination 

of this detection limit would therefore require extensive testing, which is beyond the scope 

of this study. Nonetheless, in the example illustrated in Figure 4C (Case 3, tube A), we have 

performed preliminary experiments to address the detection limit of viSNE. We randomly 

subsampled the MRD population, which comprised eight cells, to represent four cells, two 

cells, or one cell. We then subjected each sub-sample to analysis by viSNE in conjunction 

with the 10 standard control samples. We found that the subsample containing four putative 

MRD cells still appeared as an outlier in the resulting viSNE map, whereas neither the 2-cell 

nor 1-cell subsamples was distinguished from normal in the corresponding viSNE maps.

Other potential challenges inherent in MRD detection in clinical samples not reflected in the 

synthetic example include the presence within regenerating bone marrow of normal B-cell 

precursors (20), the wide spectrum of abnormal immunophenotypes encountered in clinical 

practice, and day-to-day variability in instrument and reagent performance. In spite of these 

potential pitfalls, our data demonstrate the ability of viSNE accurately to identify MRD 

populations in clinical samples. Normal B-cell precursors in samples from patients with 

ALL, and individuals with no history of leukemia were appropriately classified by the 

algorithm as being similar to their counterparts in the normal viSNE map. Furthermore, 

MRD populations were correctly identified in all 14 samples from 10 different patients, each 

with a different abnormal composite immunophenotype. Finally, in spite of efforts to 

minimize variability in the day-to-day performance of instrumentation and reagents (8), it 

remained possible that the algorithm might be sensitive to slight technical perturbations that 

are not, in fact, indicative of an abnormal immunophenotype. That our data were acquired 

over a time frame in excess of two years, yet no such technical artifacts were detected, 

indicates that the sensitivity of viSNE to differences in phenotype does not preclude its use 

in the setting of a clinical laboratory employing routine quality-assurance measures.

Although this study demonstrates in principle that viSNE may facilitate MRD detection in 

clinical samples, it will be important to confirm these findings in a separate cohort. Since cyt 
(which includes viSNE) is freely available as a download (http://www.c2b2.columbia.edu/

danapeerlab/html/cyt-download.html), this approach may easily be applied to any existing 

large data sets from cooperative groups or other large collaborative efforts. Moreover, since 

the ability of the algorithm to distinguish abnormal from normal depends upon the precise 

antibody combination used, it will be of interest to evaluate this approach using different 
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antibody panels. Newer instruments approved for clinical use are capable of 10-color 

analysis, enabling the incorporation of additional discriminatory markers per tube in 

addition to those required for standard gating (2); the number of available parameters is 

expected to increase further as the technology advances. A key advantage to viSNE is that it 

is designed to deal with higher dimensionality, and can easily accommodate 50 markers (we 

note that 50 markers result in 1,225 biaxial plots, which would be daunting for any expert). 

The incorporation of additional discriminatory markers is likely to improve the specificity of 

candidate MRD population identification by viSNE.

In this context, it is important to note that viSNE does not entirely replace the requirement 

for an analyst in immunophenotypic MRD detection. Detection of MRD by manual gating 

fundamentally includes two distinct steps: identification of candidate populations, and 

confirmation that a given candidate population in fact represents a population of leukemic 

blasts rather than a technical artifact (e.g., non-specific staining). The first step, 

identification of candidate MRD populations, is time-consuming, requiring visual inspection 

of many 2-dimensional dot plots for potential outlier populations, and is subject to false-

negative errors. It is this first step that is facilitated by viSNE. As with manual gating, 

though, the candidate outlier populations identified by viSNE proved not to represent actual 

MRD in a minority of instances. This observation indicates that, at least with the antibody 

combinations and control samples employed in this study, confirmation of candidate 

populations detected by viSNE as actual MRD is required. It is possible that the specificity 

of detection might increase with the inclusion of additional control samples from patients of 

widely varying ages. Nonetheless, the availability of a sensitive automated screening method 

for candidate MRD populations should facilitate more widespread implementation of 

immunophenotypic MRD detection in clinical flow cytometry laboratories.

Finally, although this study has focused on facilitated immunophenotypic MRD detection in 

B lymphoblastic leukemia, flow cytometry is also used to detect MRD in other 

hematolymphoid malignancies, including acute myeloid leukemia (32), chronic lymphocytic 

leukemia (33), and plasma cell myeloma (34). As in ALL, immunophenotypic MRD 

detection in these other malignancies relies upon the identification of abnormal composite 

immunophenotypes, which differ from those seen in their respective normal cellular 

counterparts. The general approach used in this study, including the generation of a 

reference viSNE map with a series of normal samples, may also serve as a model for 

analysis in these different systems. Further study is warranted to test the applicability of 

viSNE in these and other settings.
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Fig. 1. 
viSNE map of normal bone marrow B cells labeled with a single 8-color antibody 

combination (tube A). Panel A: Each of the 10 control bone marrow samples used to 

construct the map (C1 through C10) is identified individually with a unique color. Each 

point in the viSNE map represents an individual cell colored by sample identity. Panel B: 

viSNE map shown in Panel (A), in which each cell is colored to reflect intensity of antigen 

expression for six different markers in tube A. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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Fig. 2. 
Leukemic B-lymphoblast populations occupy different regions of the viSNE map from 

normal bone marrow B cells. Panel A: viSNE maps for leukemic B-lymphoblast populations 

from four different patients (ALL 1 through ALL 4) run concurrently with identically 

stained B cells from 10 control bone marrow samples (C1 through C10). As in Figure 1, 

each cell is colored to reflect sample identity. Panel B: viSNE map of leukemic B-

lymphoblasts from ALL 1 and B cells from 10 control bone marrow samples colored for 

antigen expression (tube B). The location of the leukemic B cells is shown by the circle. 

Panel C: Data from Panel (B) are shown in a conventional 3-dimensional dot plot, in which 

the axes represent expression of the three most discriminatory antigens. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. 
Normal bone marrow B cells may display partial immunophenotypic overlap with leukemic 

B-lymphoblast populations. Panel A: viSNE map showing co-localization of rare normal B 

cells from several different control samples with a single leukemic B-lymphoblast 

population. Panel B: Data from Panel (A) are shown in a conventional 3-dimensional dot 

plot, illustrating the phenotypic similarity between the rare normal B cells that co-localize 

with the leukemic B-lymphoblasts in the viSNE map. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Fig. 4. 
viSNE detects rare populations with abnormal immunophenotypes consistent with MRD. 

Left: viSNE maps from three different patients’ samples in which MRD had been detected 

by manual gating (Panel (A) MRD case 10, tube C; Panel (B) MRD case 4, tube C; Panel 

(C) MRD case 3, tube A). In each panel, the post-treatment sample containing the candidate 

MRD population is identified in red. In each case, most of the B cells from the post-

treatment sample (red) co-localize with normal B cells from the 10 control samples (each 

identified with a unique color as in the legend). In addition, an outlier population is detected 

in each of the post-treatment samples (arrows), which occupy a region of the map different 

from the normal B cells. Right: The outlier population from each patient’s post-treatment 

sample (red) is plotted against normal B cells from the 10 control samples (again identified 

with a unique color as in the legend) in conventional 3-dimensional dot plots, in which the 

axes represent expression of the three most discriminatory antigens. In each case, the outlier 

population detected by viSNE displays an abnormal composite immunophenotype consistent 

with MRD. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Fig. 5. 
Correlation between the number of putative MRD cells identified by viSNE and 

conventional manual gating (r2 = 0.99; two-tailed P < 0.0001). [Color figure can be viewed 

in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 6. 
Specificity of abnormal population identification by viSNE. Panel A: Representative 

examples of viSNE maps from a patient with no history of B lymphoblastic leukemia (left, 

negative control 2, tube A) and a patient with B lymphoblastic leukemia after treatment in 

whom no MRD was detectable by manual gating (right, no detectable disease in bone 

marrow 7, tube A). No candidate MRD populations are identified. Panel B: Left: A 

candidate outlier population in the viSNE map from a patient with B lymphoblastic 

lymphoma but no detectable leukemic B-lymphoblast population in bone marrow by manual 

gating (no detectable disease in bone marrow 9, tube A). Right: In a conventional 3-

dimensional dot plot, the candidate population (red) is indistinguishable from normal bone 

marrow B cells, and cannot be confirmed as MRD. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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